博客
关于我
卷积网络的运算量和参数量的计算
阅读量:504 次
发布时间:2019-03-07

本文共 435 字,大约阅读时间需要 1 分钟。

在实验中,计算网络的参数量和预算量是常见任务。以下是一些实用的方法和工具建议。

网络参数量的计算主要涉及模型中weight(权重)的数量。可以通过代码遍历模型的可学习参数,得出具体数量。比如,PyTorch提供了summary模块,可用于快速统计模型的大小和预算。此外,还可以使用专门的库或工具生成计算结果,简化流程。

# 计算模型参数和FLOPsfrom torchsummaryX import summarydummy_input = torch.zeros(1, 3, 128, 128).cuda()summary(model.netG, dummy_input)exit()

注:以上代码示例展示了如何快速计算模型参数数量和操作次数(FLOPs)。通过设置通用的输入大小,可以轻松获取模型的基本规模。

参数量计算通常用于评估模型在不同硬件条件下的性能表现。例如,较大的参数量可能导致模型运行时间增加,需权衡准确性与计算效率。

*结果未包含总结,符合用户要求。

转载地址:http://yvajz.baihongyu.com/

你可能感兴趣的文章
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>